Algorithm Spots COVID-19 Cases from Eye Images: Preprint

Scientists describe a potential screening method for COVID-19 based on eye images analyzed by artificial intelligence. Scanning a set of images from several hundred individuals with and without COVID-19, the tool accurately diagnosed coronavirus infections more than 90 percent of the time, the developers reported in a preprint posted to medRxiv September 10.

“Our model is quite fast,” Yanwei Fu, a computer scientist at Fudan University, who led the study, tells The Scientist. “In less than a second it can check results.”

Currently, screening for coronavirus infection involves CT imaging of the lungs or analyzing samples from the nose or throat, both of which take time and require professional effort. A system based on a few images of the eyes that could triage or even diagnose people would save on both costs and time, says Fu.

Volunteers at Shanghai Public Health Clinical Centre in Fudan each had five photos of their eyes taken using common CCD or CMOS cameras. Of 303 patients, 104 had COVID-19, 131 had other pulmonary conditions, and 68 had eye diseases. A neural network tool extracted and quantified the features from different regions of the eye and an algorithm recognized the ocular characteristics of each disease. A neural network is a series of algorithms for solving AI problems, learning as it goes along in a way that mimics the human brain. The researchers then carried out a validation experiment on a small dataset from healthy people, COVID-19 patients, pulmonary patients, and ocular patients. Of 24 people with confirmed coronavirus infections, the tool correctly diagnosed 23 and the algorithm accurately identified 30 out of 30 uninfected individuals.

Coronavirus infections, not just those caused by SARS-CoV-2, have long had associations with the eye, causing inflammation of the transparent membrane that covers the inside of the eyelid and whites of the eyeball, a condition called conjunctivitis, or pink eye. The eyes also offer a route to infection for respiratory viruses, including coronaviruses.

The Shanghai study has some potentially controversial applications, even if the AI works. Their algorithm could be used in public places, Fu says, though this would raise data privacy concerns in many countries. “In China, for example, we have a lot of high-resolution cameras everywhere,” he notes. “In airports or at train stations, we could use these surveillance cameras to check people’s eyes.” The program would be most accurate if people looked directly at the camera, but Fu says “as long as our camera can clearly watch the eye region it would be good enough.”

Screening the public without expressed consent using this algorithm would be ruled out of bounds in some parts of the world. “In Europe, this would be highly problematic and most likely illegal, in violation of the EU Charter of Fundamental Rights and general data protection legislation,” says computer scientist Barry O’Sullivan. The gathering of health data and biometric data in Europe requires consent.

The Scientist Sep 21, 2020

小井

继续阅读此作者的更多文章